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radius a is then simply Q = COE, [ K,waJ ] and coupled power
P = (1/2) ZO(uQ)2, where E, is the peak normal electric field

and ZO = 50 il. K, was calculated using a Laplace solver on a

CDC-7600 to be 3.846 and was measured to be 3.77.

The coupling was also calculated and measured as the probe

was withdrawn into the waveguide wall to o@in as much as

9-dB less coupling than the flush coupling value.
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Computation of Inductance of Simple Vias Between

Two Striplines Above a Ground Plane
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Abstract —In this paper, an analysis is developed for calculating the

lumped inductance of a simple via connecting two infinitely thin striplines,

located above a perfectly conducting ground plane. The striplines are

oriented in the same direction, and the via is assumed to be in the forus of

an infinitely thin vertical plate, connecting the two lines. This system is

anafyzed by a hybrid partial-element and circuit-theory approach. Nnmeri-

cal results are presented to illustrate the application of this technique.

L INTRODUCTION

In order to provide an accurate analysis of electronic circuits

containing transmission lines, it is necessary to take into account

the discontinuities of the transmission lines, such as the line

terminations, bends, crossovers, and connections -between differ-

ent transmission lines (vias). In the simplest model, these discon-

tinuities are represented by equivalent lumped-element networks,

consisting of inductors and capacitors.
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The lumped elements representing the discontinuities are ob-

tained by static analyses (magnetostatic and electrostatic). These

elements, essentially, take into account the excess magnetic and

electric energy stored in the field in the vicinity of the discontinu-

ity, as compared to the energy stored in the field along a uniform

transmission line. Therefore, it is possible in some cases that the

inductances or capacitances have negative vahtes.

In this paper, an analysis is developed for calculating the

lumped inductance of a simple via connecting two infinitely thin

striplines, located above a perfectly conducting ground plane.

The striplines are oriented in the same direction, and the via is

assumed to be in the form of an infinitesimally thin vertical plate,

connecting the two transmission lines.

Only a few papers exist dealing with the analysis of similar

structures. A brief survey of the existing techniques is given in [1].

The so-called partial-element method [2]- [3] is based on dividing

the conductor into a number of rectangular elements, and the self

and mutual inductances of these elements are evaluated. Resis-

tances can also be included in such a procedure. These induc-

tances (and possible resistances) are thereafter interconnected so

to form a network, which is solved by standard circuit-theory

techniques. In the second group of papers [4]–[5], the integral

equations and the Galerkin’s method are used to solve for the

unknown current distribution in the conductors. Although at first

glance these two methods seem to be different, the partial-ele-

ment method is, basically, very closely related to Galerkin’s

technique.

In this paper, we essentially employ the partial-element method,

given in [3]. A brief description of the method is given in Section

II. It is worth mentioning that the method gives, as a byproduct,

the inductances per unit length of the two striplines, joined by the

via. In Section III, some numerical examples are given, showing

the dependence of the via equivalent inductance on the via

dimensions.

II. BASIC PRINCIPLES

Let us consider a perfectly conducting body which has two

well-defined terminals (i.e., has a distinct port). Our objective is

to find the inductance of this structure as seen from the port. The

method which we are going to apply for solving this problem is

based on the partial-element method, described in [3]. It is a

hybrid of the electromagnetic-field methods and the electric-ci-

rcuit methods. Although we are not going to explicitly use the

frequency-domain analysis, our solution corresponds essentially

to the limiting case of time-harmonic fields when the frequency

tends to zero. This situation is sometimes referred to as the

magnetostatic analysis.

First note that the currents in our object are located only in a

surface layer, because the structure is perfectly conducting. The

surface-current density vector J. at any point on the surface can

be represented as the sum of two orthogonal components. For the

sake of simplicity, we shall assume that the surface of the

conductor is piecewise flat and that the current-density vector

can be represented in terms of two local, say, u and u, compo-

nents. We first approximate the conductor by surface patches

(partial elements) carrying currents of constant density over a

patch that will represent the body regarding the magnetic field it

produces, and treat these patches as simple inductances. Next, we

create a network of these inductances and thus find the total

inductance between the input ports. Enforcing the first Kirch-

hoff’s law for all the nodes of the network ensures that the
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F,g, 1, A portion of the surface of the analyzed body with the partial
elements. — boundaries of partml elements carrying u-directed current ---
boundaries of partial elements carrying u-directed current. ///// example
of an element carrying u-directed current. \\\\\ example of an element
carrying u-directed current.

Fig. 2. Inductance network representing the surface of Fig. 1.

continuity equation is satisfied, which is always postulated in the

magnetostatic analysis. (In other words, we are assuming that no

excess charges are localized at the conductor surface.)

Let us specify a set of nodes over the surface, forming a

rectangular grid (see Fig. l). We should take two different

schemes for dividing the conductor into partial elements—one

for the u-component, and another for the u-component of the

surface current, as also sketched in Fig. 1. After replacing the

partial elements by the equivalent inductances, we obtain a

network as shown in Fig. 2. The inductances parallel to one axis

are mutually coupled, while the coupling between mutually per-

pendicular inductances (i.e., between patches corresponding to

mutually perpendicular surface-current components) is zero. Of

course, if the whole body is observed, one should take into

account all the possible couplings between the patches. It should

be noted that the grid need not be rectangular, nor the patches

need be rectangles, but the choice taken here eases the compu-

tations of the self and mutual inductances, since most of the

integrals involved in the analysis can be evaluated explicitly.

The self and mutual inductances can be obtained starting from

the general expression for the magnetic energy stored in the

magnetic field produced by surface electric currents, of density

~, to yield

where s,, i=l,. ... n are the patches into which the body surface

is divided.

In the present approach, we are assuming that the current

density is uniform over a patch, i.e., that the vector ~ is constant

over the patch. The total current over a patch is, hence, WJ,,

where w is the width of the patch, i.e., the dimension of the patch

that is perpendicular to the vector ~ of that patch. Thus, the

mutual inductance of two arbitrary patches is given by

2~n,,! 1 po

U

+(r’).~(r) ds’ ds

““ = 1,1,> = 111,, 4T ,, ~z, Ir - r’1 “
(2)

[ ,/

Fig. 3 Sketch of a stripline step above a ground plane. The strips and the via
are rectangular, infinitely thm plates. The right end of the second strip IS
short-circuited to the ground plane, and the left end of the first strip
represents the input port.

This equation is valid for any i and i‘, and thus gives both the

mutual and self inductances. The dual surface integraf given in

(2), which is actually a four-fold integraJ in terms of line

coordinates, can be in principle evaluated either numerically or

explicitly, thus yielding the elements of the inductance network

shown in Fig. 2. This network can be, thereafter, solved by using

the circuit-theory methods to produce the total inductance be-

tween the input terminals.

In this paper, the above method is applied to the analysis of a

stripline step, which can be considered as a simple via between

two striplines, located above a perfectly conducting ground plane

(Fig. 3). The orientation of the two stnplines is identical, i.e.,

both of them extend along the x-axis. The via is assumed in the

form of a vertical rectangular plate, Joining the striplines. The

widths of the two lines and the width of the via can be arbitrary,

but the system is assumed to possess a plane of symmetry (Oxz in

Fig. 3). We shall sometimes consider the two strips and the via as

three rectangular plates.

For the present’ method, we must ensure that the overall

dimensions of the striplines are finite, and thus we must take

finite-length sections of both stnplines ( Dl, D2). These lengths

should be sufficiently large to ensure that there is a portion in the

middle of any of the lines where the current distribution is

practically identical to that of an infinitely long line, In another

words, the lengths of the lines must be longer than the zones in

which the effect of the terminal connections and of the via on the

current distribution is significant. In the present analysis, we are

not going to take into account the actual shape of the terminals

or the short-circuiting conductor at the other end. This approach

presents no conceptual difficulties with the circuit-theory meth-

ods, but from the field-theory standpoint it is meaningless to take

the terminal or the short-circuiting wires to be infinitely thin.

However, we are not interested in the properties of the wire

junctions, but rather only in the currents and fields away from

them, towards the via.

Although, in principle, we can represent the ground plane (over

a finite area) by a number of rectangular patches, it is much

simpler (and computationally faster) to replace the ground plane

by the mirror-image of the original system,

For the structure in hand, we can define rectangular grids of

nodes, which are uniform over each of the three segments of the

structure shown in Fig. 3, i.e., over the two strips and the via

plate. The same grid should be taken for the image in the ground

plane.

Regarding computation of the dual surface integrals, given in

(2), we can distinguish between two different cases. The first is
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Fig. 4. The equivalent network for the system of Fig. 3. The self and mutual
inductances include the influence of the symmetrical other half of the system
and of the images.

when the two patches are mutually parallel (and carry currents in

the same direction), such as any two patches lying in the two

strips, or any two patches lying in the via plate. These integrals

can be evaluated explicitly, as shown in the Appendix. The

second case is when one of the two patches lies in a horizontal

plate (i.e., one of the strips), while the other patch lies in the via

plate. These integrals can be evaluated by combining the explicit

and numerical integration, as also shown in the Appendix.

Once the self and mutual inductances are obtained, we have to

precede to the circuit-theory analysis of the equivalent induc-

tance network. Taking the symmetry into account, we have to

consider only the network shown in Fig. 4. We can excite the

network by an ideal current generator, of a known amplitude,

and apply the mesh equations, choosing the elemental windows

for the meshes and orienting diem in an anti-clockwise direction.

The mesh equations should be set in the frequency domain.

However, the term jw can be canceled out in all the equations, so

that no information about the frequency is required. This means

that the frequency can be taken arbitrarily low, yielding the zero

frequency in the limiting case, and thus justifying the term

“ magnetostatic analysis.” Once the mesh equations are solved,

the mesh currents are known, and the voltage between any two

nodes of the network can easily be found.

In the simplest model, which we are using here, the influence of

the via is replaced by an equivalent inductance (regarding the

magnetic energy), as shown in Fig, 5. Namely, we assume that

both transmission lines (i.e., the two striplines) extend to the very

position of the via plate and, in addition, that the inductances per

unit length of the two lines are uniform up to the very junction

between them. The inductance inserted in this equivalent circuit

between the two lines should make up for the differences between

this idealization and the reality.

Close to the terminals of the system shown in Fig. 3, the

current distribution rdong the strips deviates significantly from

the distribution which would exist on an infinitely long strip. In

the vicinity of the via, the current distribution also deviates from

the infinite-line case. However, we are interested exactly in the

effects of the latter deviation, while the terminals are of no

importance for our analysis.

Note that in the two-dimensional case (i.e., for an infinitely

long stripline), the voltage between any two points lying in a

cross section of the strip is zero. In contrast to this, in the

fringing zone, this voltage generally differs from zero. If the two

strips in the system of Fig. 3 are of sufficient lengths, then away

from the terminal and via zones, around the middles of the strips,

the current and potential distributions are practically identical to

the corresponding two-dimensional case. If we choose two refer-

ence planes, one at each strip, lying in these particular regions,

, I8 m,

=+i-Lk@
Fig, 5. Equivalent representation of the via shown in Fig. 3.

then we can uniquely define the voltage between these planes.

From this voltage, we can obtain the apparent inductance be-

tween the two cross sections. Let us denote this inductance by

Ld. (This inductance contains no information about the strip

terminals, which are left out.)

Referring to Figs. 3 and 5, we can see that the equivalent

circuit shown in Fig. 5 should equal the total inductance in the

system of Fig. 3 between the cross sections 1 and 2. The total

inductance in the equivalent circuit consists of the inductances of

the two transmission lines, and the via equivalent inductance LU.

If the inductances per unit length of the two lines are El and Lj,

respectively, and if the distances between the reference planes

and the via are 11 and [Z, respectively, we can write

La=llL; +lz Ez+LU. (3)

From (3), we can evaluate LU if we know L; and Uz. Although

these inductances can be obtained from a separate analysis, the

results which we have obtained by solving the mesh equations

provide sufficient information to calculate Lf and Uz. Namely,
we can observe a short section of a strip in the middle zone,

around the reference plane, and compute the voltage along this
section. Of course, since we are in the region where the current
and potential distributions are the same as in the two-dimen-
sional case, we can uniquely define this voltage. From this
voltage, we get the apparent inductance of this short section
between the two cross sections, and hence the inductance per unit
length of the transmission line. Finally, from (3), we can compute
the inductance Lo, which is the final goal of the present analysis.

At this point, it should be mentioned that the number of

partird elements should be taken sufficiently large so that the

variation of the current distribution over all the three plates can

be represented with a high degree of accuracy. However, there is

no a priori rule about this choice and it is always advisable to
solve the same problem for various numbers of nodes and com-
pare the results. Regarding the choice of the reference planes,
maybe the simplest choice is to take them as close as possible to
the very middle of the strips. Some insight into the numerical
stability of the present method can be gained from the next
section.

III. NUMERICALEXAMPLES

In all the examples, the lengths of the two strips are taken to be
D1 = Dz =20 mm, but the other dimensions of the system, as well

as the numbers of partial elements, are varied. The results are

presented in Table L In this table, the symbols have the following

meanings:

HI distance between the perfectly conducting plane and

the first strip,

Hz distance between the perfectly conducting plane and

the second strip,

WI width of the first strip,

W2 width of the via plate,

W3 width of the second strip,

NX1 number of meshes along the length of the first strip,

NX2 number of meshes along the height of the via plate,
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TABLE I
EQUIVALENT VIA INDUCTANCE FOR VARIOUS DIMENSIONS AND

NUMBERS OF PARTIAL ELEMENTS FOR THE SYSTEM SXETCHED IN FIG. 3

HI Hz WI W2 W3 NX1 NX2 NX3 NY1 NY2 NY3 L~ L; LU
0.011555424 444 2.50 1651 851
0.01155562 6444 2.50 164.5 904
0011555164 16444 2.50 164,4 91.3

1255562 6444 165,7 256.7 107.1
1255516416 444 1659 257.1 101.5

0.5 1 52.5108282 14 985
0515

98.2 129.9
2.5 10 8 2 8428 97,7 97.6 140.5

05 1 52.510124124 28 977 97.2 158.3

05 1 51.2510124124 18 97.7
0.5 1

97.2 297.9
5 2.5 10 12412428 97,7 97.2 158.3

0.515510124 12448 9’7.7 97.3 79.0

number of mesfies along the length of the second strip,

number of meshes along the half-width of the first strip,

number of meshes along the half-width of the via plate,

number of meshes along the half-width of the second

strip,

inductance per unit length of the first strip (nH/m),

inductance per unit length of the second stnp(nH/m),

equivalent via inductance (pH).

The entries in Table I are grouped so that they can easily be

compared. All the dimensions of the system are in millimeters.

For the first three entries, the first strip is extremely close to

the ground plane. The entries differ only in the number of partial

elements used in the computation. Even with the smallest num-

ber, the results for the inductances are very good. The second

group of entries is similar, except that the two strips are placed at

higher levels. Theconclusions regarding the quality of the results

are similar as before. Note that the second strip inthe first group

is identical to the first strip in the second group, which results in

very close corresponding results for the inductances per unit

length in the two cases.

In the third group of entries, the widths of the two strips, as

well as that of the via plate, are unequal. Again, the number of

partial elements is varied, and this introduces only insignificant

changes into the inductances per unit length. The via equivalent

inductance, however, suffers somewhat greater changes, which

could be expected, because of the fringing effects at the connec-

tionbetween theviaplate and the two strips. Of course, in order

to properly model the current distnbutionin the vicinity of these

junctions, we need a large number of partial elements. Note that

with the increasing number of the partial elements, the via

equivalent inductance increases because of progressively better

modeling of the fringing effects.

Finally, in the fourth group of entries, the via width is progres-

sively increased, while the other dimensions are kept intact. For

convenience, the last entry from the third group is repeated as the

second entry in the fourth group. As expected, the via equivalent

inductance increases as the via width decreases and the induc-

tances per unit length of the two transmission lines are practically

constant.

V. CONCLUSION

This paper presents a method which can be used for magneto-

static analysis of perfectly conducting three-dimensional struc-

tures. The method is applied to analysis of a flat via, connecting

two zero-thickness striplines, placed above a ground plane. Es-

sentially, the surface of the conductor is replaced by rectangular

partial elements. These elements are characterized by the self and

mutual inductances. These equivalent inductances are intercon-

nected in a network, which is solved by the circuit-theory meth-

ods. From the known currents through the inductances, the

inductances per unit length of the two stnplines are computed,

and the equivalent via inductance is obtained as the final result.

Numencaf results are presented showing a good stability and

reasonably accurate values of the via inductance even if only a

relatively small number of partial elements is employed.

APPENDIX

EVALUATION OF INTEGRALS

As already mentioned in Section II, in the present analysis

there exist two kinds of integrals which should be evaluated in (2)

in order to find the self and mutuaf inductances of the rectangu-

lar partial elements.

The first kind of integrals appear when both partird elements

are parallel to a coordinate plane. This is the case if the two

elements belong to the strips or their images, or if the two

elements belong to the via, or its image. Let us suppose that both

rectangular elements are parallel to the Oxy plane, and that their

edges are parallel to the x and y axes. Let the location of the

first element be determined by its vertices (X1l, Y[l, Z1),

(x~l, .Y/I, zI), (xtil, YUI, ZI), (XII, .YUI, z,), while the vertices of the

second element are (X12, y{2, Z2), (XU2, Y12, z), (x.2, YU2, z2)> (x/2!

.L2 >Z2). Noting that the surface-current densities in (4 are
constant vectors over the elements, it is easy to see that the

integral that has to be evaluated has the form

J
Y“2

“‘“ [(x- x’)2+(y_:’)2+(z, _z2)21’/2 w4~x’dx.

(4)

This four-fold integral can be reduced to 16 two-fold integrals by

introducing the following changes of variables: s = x‘ — x, s’ =

x’, t = y’— y, t’= y’, i.e.,

4

G= ~ z aPbqH(UP, Uq) (5)
~=lq=l

where

and U1= IXU2 — X,ll, Uz = 1X12 — Xu~l, U3 = IxU2 — XUII, u4 = Ixn

— x/11, VI = lYu2 — Y/n) U2 = lY/2 – Yull! V3 = lYu2 – Yull> U4 = lY/2 —

y,ll, a1=a2=b1=b2=l, a3= a4=b3=b4= –l, andz=z2–

Z1
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The integral H( u, u ) can be evaluated explicitly, to yield

{[

17(rf, u) = uv z arcsin
Uz

+ arcsin
(s4’ + U’)’’’(U’ + z’)’” (U’ + #)’&’ +22)’/’ -;

– ; log
(u’+u’+z’)1/2-u

– ; log
(u’ +u’-tz’)1/2- 24

(U2 + v’ +22)1/2+ v (u’ +V2 +2’)1/2+ u )

[

U+(U’+U’)1’2
–; u(t4’+v’)1’2 +(v’+z’)log

U+(U’+Z’)1’2
U(tf’ + 2’)1’2– z’ log

(v’ + 2’)’/2 - z

[

V+(U’+V’)1’2
; v(u’+v’)1’2 +(u2+z’) log—— – V(V* +2’)1/2

(u’ + 22)1/2

v +(V’ +Z2)1’2
–z’ log 1+*[(u’ + L?)3’2–(U’ +Z’)3’2–(C? +z2)3’2+zq .

z

The second kind of integrals appear when one of the partial

elements is parallel to the Oxy plane, and the second one is
parallel to the Oyz plane. This is the case when one of the
elements belongs to one of the stips, or its image, while the other
element belongs to the via, or its image. If the first element

vertices are (xll, yll, zl), (xUl, Y/l, zl)j (xUl, YU1,zl), (x/l, YUl,zl),
and the second element vertices are (x2, y12,Z12), (X2, YU2,Z12),

(x’, Y.’, z.’ ), (x’, Y[’, z.’), then the integr~ to be evaluated has
the form

J
Y.2

“Z [( X- X2)2+ (Y-:)’+ (z1_z)2]I/2d~’d~dz~x (8)

Again, by introducing changes of variables t = y’ – y, t’ = y’,
the two integrals over y and y’ are reduced to only one integral
over t.That integral and the integral over, say x, can be evaluated
explicitly, thus yielding

G=f’dz ~ ~ aPbqH(uP, vq, z)
21 p=lq=l

(9)

where

and al=–l, a2=l, ul=lx{1–x21, u2 =lxU1–-X2I, and bq and

Vq are the same as defined with (6). The integral H( u, v, z) can

be integrated explicitly to yield

([H(u, v,z)=v z arcsin
( U2 + #)l&’ + 2’)’/2

71
+ arcsin

(u’ + v’)1/7u’ +z’)’/’ 2I
– ; log

(u’ +V2 +2’)1’2- u

(U’+ V’+Z’)1’2+V

– : log
(u’ +-v’ +z’)l/’ _ u

(U’+ U’+Z’)1’2+U }

269

(7)

1—

[

j U(U2+U’ )1’2+(V2+Z’)

. log
U+(U’+U’)1’2

U(U2 + 22)1’2
(0’ +Z’)1’2 -

U+(U’+Z’)1’2
– z’ log

z 1 (11)

and the remaining integral in (9) can be evaluated numerically.
Note that due to the reciprocity properties, ~,i, = L, t,, and

thus substantial savings in the computation are possible.

[1]

[2]

[3]

[4]

[5]

ReferenCeS

A. E. Ruehli, “Survey of computer-aided electrical analysis of integrated
circuit interconnections,” IBM J. Res. Develop., VOL 23, pp. 626-639,

1979.

A. E. Ruehli, “Inductance calculation in a complex integrated circuit
environment,” IBM J. Res. Develop., vol. 16, pp. 470-481.1972.
P. A. Brennan, N. Raver and A. E. Ruehli, “Three-dimensional indu,c-
tarrce computations with partial element equivalent circuits,” IBM J. Res.

Develop., VOL 23, pp. 661-668, 1979.

A. Gopinath and P. Silvester, “Calculation of inductance of finite-length
strips and its variation with frequency,” fEEE Trans. Microwave Theory

Tech., vol. MTT-21, pp. 380–386, 1973.
A Gopinath and B. Easter, “Moment method of calculating discontinuity
inductance of microstrip right-angled bends,” IEEE Trans. Mtcrowaue

Theory Tech., vol. MTT-22, pp. 880-883, 1974.

Analyzing Lossy Radial-Line Stubs

STEVEN L. MARCH, MEMBER,IEEE

.4b.vtract — Equations for the design and anafysis of Iossless radial-line

stubs are available in the literature. However, when actually fabricated in

microstrip or s~tpline, these stubs possess finite conductor 10SS. This

attenuation must be included if these components are to be properly

integrated with other 10SSYtransmission-line elements as part of a micro-
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