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radius g is then simply Q =¢,E.[K,ma’] and coupled power
P=(1/2)Zy(wQ)?, where E, is the peak normal clectric field
and Z,=50 Q. K, was calculated using a Laplace solver on a
CDC-7600 to be 3.846 and was measured to be 3.77.

The coupling was also calculated and measured as the probe
was withdrawn into the waveguide wall to obtain as much as
9-dB less coupling than the flush coupling value.
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Computation of Inductance of Simple Vias Between
Two Striplines Above a Ground Plane

ANTONIJE R. DJORDJEVIC anp TAPAN K. SARKAR,
SENIOR MEMBER, IEEE

Abstract —In this paper, an analysis is developed for calculating the
lumped inductance of a simple via connecting two infinitely thin striplines,
located above a perfectly conducting ground plane. The striplines are
oriented in the same direction, and the via is assumed to be in the form of
an infinitely thin vertical plate, connecting the two lines. This system is
analyzed by a hybrid partial-element and circuit-theory approach. Numeri-
cal results are presented to illustrate the application of this technique.

I. INTRODUCTION

In order to provide an accurate analysis.of electronic circuits
containing transmission lines, it is necessary to take into account
the discontinuities of the transmission lines, such as the line
terminations, bends, crossovers, and connections between differ-
ent transmission lines (vias). In the simplest model, these discon-
tinuities are represented by equivalent lumped-element networks,
consisting of inductors and capacitors.
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The lumped elements representing the discontinuities are ob-
tained by static analyses (magnetostatic and electrostatic). These
elements, essentially, take into account the excess magnetic and
electric energy stored in the field in the vicinity of the discontinu-
ity, as compared to the energy stored in the field along a uniform
transmission line. Therefore, it is possible in some cases that the
inductances or capacitances have negative values.

In this paper, an analysis is developed for calculating the
lumped inductance of a simple via connecting two infinitely thin
striplines, located above a perfectly conducting ground plane.
The striplines are oriented in the same direction, and the via is
assumed to be in the form of an infinitesimally thin vertical plate,
connecting the two transmission lines.

Only a few papers exist dealing with the analysis of similar
structures. A brief survey of the existing techniques is given in [1].
The so-called partial-element method [2]-[3] is based on dividing
the conductor into a number of rectangular elements, and the self
and mutual inductances of these elements are evaluated. Resis-
tances can also be included in such a procedure. These induc-
tances (and possible resistances) are thereafter interconnected so
to form a network, which is solved by standard circuit-theory
techniques. In the second group of papers [4]-[5], the integral
equations and the Galerkin’s method are used to solve for the
unknown current distribution in the conductors. Although at first
glance these two methods seem to be different, the partial-ele-
ment method is, basically, very closely related to Galerkin’s
technique.

In this paper, we essentially employ the partial-element method,
given in [3]. A brief description of the method is given in Section
IL. It is worth mentioning that the method gives, as a byproduct,
the inductances per unit length of the two striplines, joined by the
via. In Section III, some numerical examples are given, showing
the dependence of the via equivalent inductance on the via
dimensions.

II. BASIC PRINCIPLES

Let us consider a perfectly conducting body which has two
well-defined terminals (i.e., has a distinct port). Our objective is
to find the inductance of this structure as seen from the port. The
method which we are going to apply for solving this problem is
based on the partial-element method, described in [3]. It is a
hybrid of the electromagnetic-field methods and the electric-cir-
cuit methods. Although we are not going to explicitly use the
frequency-domain analysis, our solution corresponds essentially
to the limiting case of time-harmonic fields when the frequency
tends to zero. This situation is sometimes referred to as the
magnetostatic analysis.

First note that the currents in our object are located only in a
surface layer, because the structure is perfectly conducting. The
surface-current density vector J, at any point on the surface can
be represented as the sum of two orthogonal components. For the
sake of simplicity, we shall assume that the surface of the
conductor is piecewise flat and that the current-density vector
can be represented in terms of two local, say, 4 and v, compo-
nents. We first approximate the conductor by surface patches
(partial elements) carrying currents of constant density over a
patch that will represent the body regarding the magnetic field it
produces, and treat these patches as simple inductances. Next, we
create a network of these inductances and thus find the total
inductance between the input ports. Enforcing the first Kirch-
hoff’s law for all the nodes of the network ensures that the
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Fig. 1. A portion of the surface of the analyzed body with the partial
elements. boundaries of partial elements carrying u-directed current ---
boundaries of partial elements carrying v-directed current. / / / / / example
of an element carrying wu-directed current. \\ \\\| example of an element
carrying v-directed current.
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Fig. 2.

Inductance network representing the surface of Fig, 1.

continuity equation is satisfied, which is always postulated in the
magnetostatic analysis. (In other words, we are assuming that no
excess charges are localized at the conductor surface.)

Let us specify a set of nodes over the surface, forming a
rectangular grid (see Fig. 1). We should take two different
schemes for dividing the conductor into partial elements—one
for the u-component, and another for the v-component of the
surface current, as also sketched in Fig. 1. After replacing the
partial elements by the equivalent inductances, we obtain a
network as shown in Fig. 2. The inductances parallel to one axis
are mutually coupled, while the coupling between mutually per-
pendicular inductances (i.e., between patches corresponding to
mutually perpendicular surface-current components) is zero. Of
course, if the whole body is observed, one should take into
account all the possible couplings between the patches. It should
be noted that the grid need not be rectangular, nor the patches
need be rectangles, but the choice taken here eases the compu-
tations of the self and mutual inductances, since most of the
integrals involved in the analysis can be evaluated explicitly.

The self and mutual inductances can be obtained starting from
the general expression for the magnetic energy stored in the
magnetic field produced by surface electric currents, of density
J., to yield

-~ v 1 po I (r')-J(r) ds’ ds
VV;H = A A 1
zgl 121 2 4m ‘/s,‘/s:,/ Il‘— r/| ( )
where s,,i=1,- - -, n are the patches into which the body surface
is divided.

In the present approach, we are assuming that the current
density is uniform over a patch, i.e., that the vector J, is constant
over the patch. The total current over a patch is, hence, wJ/,,
where w is the width of the patch, i.e., the dimension of the patch
that is perpendicular to the vector J, of that patch. Thus, the
mutual inductance of two arbitrary patches is given by

2VV;n11' 1 Ho Js(r,)"s(r) ds’ ds
C LI, Ll 4n f/ '

(2)

1’

r=r|
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Fig. 3  Sketch of a stripline step above a ground plane. The strips and the via
are rectangular, infinitely thin plates. The right end of the second strip 1s
short-circuited to the ground plane, and the left end of the first strip
represents the input port.

This equation is valid for any i/ and i’, and thus gives both the
mutual and self inductances. The dual surface integral given in
(2), which is actually a four-fold integral in terms of line
coordinates, can be in principle evaluated either numerically or
explicitly, thus yielding the elements of the inductance network
shown in Fig. 2. This network can be, thereafter, solved by using
the circuit-theory methods to produce the total inductance be-
tween the input terminals.

In this paper, the above method is applied to the analysis of a
stripline step, which can be considered as a simple via between
two striplines, located above a perfectly conducting ground plane
(Fig. 3). The orientation of the two striplines is identical, ie.,
both of them extend along the x-axis. The via is assumed in the
form of a vertical rectangular plate, joining the striplines. The
widths of the two lines and the width of the via can be arbitrary,
but the system is assumed to possess a plane of symmetry (0xz in
Fig. 3). We shall sometimes consider the two strips and the via as
three rectangular plates.

For the present method, we must ensure that the overall
dimensions of the striplines are finite, and thus we must take
finite-length sections of both striplines (D,, D,). These lengths
should be sufficiently large to ensure that there is a portion in the
middle of any of the lines where the current distribution is
practically identical to that of an infinitely long line. In another
words, the lengths of the lines must be longer than the zones in
which the effect of the terminal connections and of the via on the
current distribution is significant. In the present analysis, we are
not going to take into account the actual shape of the terminals
or the short-circuiting conductor at the other end. This approach
presents no conceptual difficulties with the circuit-theory meth-
ods, but from the field-theory standpoint it is meaningless to take
the terminal or the short-circuiting wires to be infinitely thin.
However, we are not interested in the properties of the wire
junctions, but rather only in the currents and fields away from
them, towards the via.

Although, in principle, we can represent the ground plane (over
a finite area) by a number of rectangular patches, it is much
simpler (and computationally faster) to replace the ground plane
by the mirror-image of the original system.

For the structure in hand, we can define rectangular grids of
nodes, which are uniform over each of the three segments of the
structure shown in Fig. 3, ie., over the two strips and the via
plate. The same grid should be taken for the image in the ground
plane.

Regarding computation of the dual surface integrals, given in
(2), we can distinguish between two different cases. The first is
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Fig. 4. The equivalent network for the system of Fig. 3. The self and mutual
inductances include the influence of the symmetrical other half of the system
and of the images.

when the two patches are mutually parallel (and carry currents in
the same direction), such as any two patches lying in the two
strips, or any two patches lying in the via plate. These integrals
can be evaluated explicitly, as shown in the Appendix. The
second case is when one of the two patches lies in a horizontal
plate (i.e., one of the strips), while the other patch lies in the via
plate. These integrals can be evaluated by combining the explicit
and numerical integration, as also shown in the Appendix.

Once the self and mutual inductances are obtained, we have to
procede to the circuit-theory analysis of the equivalent induc-
tance network. Taking the symmetry into account, we have to
consider only the network shown in Fig, 4. We can excite the
network by an ideal current generator, of a known amplitude,
and apply the mesh equations, choosing the elemental windows
for the meshes and orienting them in an anti-clockwise direction.
The mesh equations should be set in the frequency domain.
However, the term jw can be canceled out in all the equations, so
that no information about the frequency is required. This means
that the frequency can be taken arbitrarily low, yielding the zero
frequency in the limiting case, and thus justifying the term
“magnetostatic analysis.” Once the mesh equations are solved,
the mesh currents are known, and the voltage between any two
nodes of the network can easily be found.

In the simplest model, which we are using here, the influence of
the via is replaced by an equivalent inductance (regarding the
magnetic energy), as shown in Fig. 5. Namely, we assume that
both transmission lines (i.e., the two striplines) extend to the very
position of the via plate and, in addition, that the inductances per
unit length of the two lines are uniform up to the very junction
between them. The inductance inserted in this equivalent circuit
between the two lines should make up for the differences between
this idealization and the reality.

Close to the terminals of the system shown in Fig. 3, the
current distribution along the strips deviates significantly from
the distribution which would exist on an infinitely long strip. In
the vicinity of the via, the current distribution also deviates from
the infinite-line case. However, we are interested exactly in the
effects of the latter deviation, while the terminals are of no
importance for our analysis.

Note that in the two-dimensional case (i.c., for an infinitely
long stripline), the voltage between any two points lying in a
cross section of the strip is zero. In contrast to this, in the
fringing zone, this voltage generally differs from zero. If the two
strips in the system of Fig. 3 are of sufficient lengths, then away
from the terminal and via zones, around the middles of the strips,
the current and potential distributions are practically identical to
the corresponding two-dimensional case. If we choose two refer-
ence planes, one at each strip, lying in these particular regions,

267

! !
Y ~ 4
! i
: LV )
/1 l—\
7
Reference Reference
plane ! Uy i plane 2
Fig. 5. Equivalent representation of the via shown in Fig. 3.

then we can uniquely define the voltage between these planes.
From this voltage, we can obtain the apparent inductance be-
tween the two cross sections. Let us denote this inductance by
L,. (This inductance contains no information about the strip
terminals, which are left out.)

Referring to Figs. 3 and 5, we can see that the equivalent
circuit shown in Fig. § should equal the total inductance in the
system of Fig. 3 between the cross sections 1 and 2. The total
inductance in the equivalent circuit consists of the inductances of
the two transmission lines, and the via equivalent inductance L,.
If the inductances per unit length of the two lines are L] and L,
respectively, and if the distances between the reference planes
and the via are /; and [,, respectively, we can write

L,=LL+LL+L,. 3)

From (3), we can evaluate L, if we know L] and Lj. Although
these inductances can be obtained from a separate analysis, the
results which we have obtained by solving the mesh equations
provide sufficient information to calculate L] and L. Namely,
we can observe a short section of a strip in the middle zone,
around the reference plane, and compute the voltage along this
section. Of course, since we are in the region where the current
and potential distributions are the same as in the two-dimen-
sional case, we can uniquely define this voltage. From this
voltage, we get the apparent inductance of this short section
between the two cross sections, and hence the inductance per unit
length of the transmission line. Finally, from (3), we can compute
the inductance L,, which is the final goal of the present analysis.

At this point, it should be mentioned that the number of
partial elements should be taken sufficiently large so that the
variation of the current distribution over all the three plates can
be represented with a high degree of accuracy. However, there is
no a priori rule about this choice and it is always advisable to
solve the same problem for various numbers of nodes and com-
pare the results. Regarding the choice of the reference planes,
maybe the simplest choice is to take them as close as possible to
the very middle of the strips. Some insight into the numerical
stability of the present method can be gained from the next
section.

III. NuUMERICAL EXAMPLES

In all the examples, the lengths of the two strips are taken to be
D, = D, = 20 mm, but the other dimensions of the system, as well
as the numbers of partial elements, are varied. The results are
presented in Table I. In this table, the symbols have the following
meanings:

H, distance between the perfectly conducting plane and

the first strip,

H, distance between the perfectly conducting plane and

the second strip,

W,  width of the first strip,

W,  width of the via plate,

W,  width of the second strip,

NX; number of meshes along the length of the first strip,

NX, number of meshes along the height of the via plate,
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TABLEI
EQUIVALENT V1A INDUCTANCE FOR VARIOUS DIMENSIONS AND

NUMBERS OF PARTIAL ELEMENTS

FOR THE SYSTEM SKETCHED IN FIG. 3

o, I, W, W, W, NX, NX, NX; NY, NY, NY; I , I,
001 1 5 5 5 4 2 4 4 4 4 250 1651 851
001 1 5 5 5 6 2 6 4 4 a4 250 1645 904
001 1 5 5 5 16 4 16 4 4 4 250 1644 913
1 2 5 5 5 6 2 6 4 4 4 1657 2567 107.1
1 2 5 s 5 16 4 16 4 4 4 1659 2571 10L5
05 1 5 25 10 8 2 8 2 1 4 985 982 1299
05 1 5 25 10 8§ 2 8 4 2 8 917 976 1405
05 1 5 25 10 12 4 12 4 2 8 977 972 1583
65 1 5 125 10 12 4 12 4 1 & 977 972 2979
05 1 5 25 10 12 4 12 4 2 8 9717 972 1583
05 1 5 5 10 12 4 12 4 4 8 977 973 790

NX, number of meshes along the length of the second strip,
NY, number of meshes along the half-width of the first strip,
NY, number of meshes along the half-width of the via plate,
NY, number of meshes along the half-width of the second
strip,

L] inductance per unit length of the first strip (nH/m),
L, inductance per unit length of the second strip (nH/m),
L, equivalent via inductance (pH).

The entries in Table I are grouped so that they can easily be
compared. All the dimensions of the system are in millimeters.

For the first three entries, the first strip is extremely close to
the ground plane. The entries differ only in the number of partial
elements used in the computation. Even with the smallest num-
ber, the results for the inductances are very good. The second
group of entries is similar, except that the two strips are placed at
higher levels. The conclusions regarding the quality of the results
are similar as before. Note that the second strip in the first group
is identical to the first strip in the second group, which results in
very close corresponding results for the inductances per unit
length in the two cases.

In the third group of entries, the widths of the two strips, as
well as that of the via plate, are unequal. Again, the number of
partial elements is varied, and this introduces only insignificant
changes into the inductances per unit length. The via equivalent
inductance, however, suffers somewhat greater changes, which
could be expected, because of the fringing effects at the connec-
tion between the via plate and the two strips. Of course, in order
to properly model the current distribution in the vicinity of these
junctions, we need a large number of partial elements. Note that
with the increasing number of the partial elements, the via
equivalent inductance increases because of progressively better
modeling of the fringing effects.

Finally, in the fourth group of entries, the via width is progres-
sively increased, while the other dimensions are kept intact. For
convenience, the last entry from the third group is repeated as the
second entry in the fourth group. As expected, the via equivalent

. inductance increases as the via width decreases and the induc-
tances per unit length of the two transmission lines are practically
constant.

V. CONCLUSION

This paper presents a method which can be used for magneto-
static analysis of perfectly conducting three-dimensional struc-
tores. The method is applied to analysis of a flat via, connecting
two zero-thickness striplines, placed above a ground plane. Es-
sentially, the surface of the conductor is replaced by rectangular
partial elements. These elements are characterized by the self and
mutual inductances. These equivalent inductances are intercon-

nected in a network, which is solved by the circuit-theory meth-
ods. From the known currents through the inductances, the
inductances per unit length of the two striplines are computed,
and the equivalent via inductance is obtained as the final result.
Numerical results are presented showing a good stability and
reasonably accurate values of the via inductance even if only a
relatively small number of partial elements is emplovyed.

APPENDIX
EVALUATION OF INTEGRALS

As already mentioned in Section II, in the present analysis
there exist two kinds of integrals which should be evaluated in (2)
in order to find the self and mutual inductances of the rectangu-
lar partial elements.

The first kind of integrals appear when both partial elements
are parallel to a coordinate plane. This is the case if the two
elements belong to the strips or their images, or if the two
elements belong to the via, or its image. Let us suppose that both
rectangular elements are parallel to the Oxy plane, and that their
edges are parallel to the x and y axes. Let the location of the
first element be determined by its vertices (X;, Yu, Z1)s
(X5 Y10 21)s (%25 Vs 21)s (X35 a5 21), while the vertices of the
second element are (x5, ¥12, 22)s (X425 V125 2)s (X425 Y2 22)s (X125
Y,2-25). Noting that the surface-current densities in (2) are
constant vectors over the elements, it is easy to see that the
integral that has to be evaluated has the form

G=fxu1/xuzfyu1

X “Xp “¥n

1

. i [(x —x’)2+(y—y’)2+(21“22)2]

Vw2

3 dy’ dydx’ dx.

4

This four-fold integral can be reduced to 16 two-fold integrals by
introducing the following changes of variables: s =x"— x,s'=
xt=y —y,t'=y ie,
4 4
G=Y ) abH(u,,uv,) (5)
p=1lg=1
where

H(u,v)=/0“/o”M"£idzds (6)

1/2

(s*+ 12 +2%) /

and u; =|x,, = Xl Uy =[x — X, us=|x,; — Xurl ta =|xp

= Xph V1=1Y2 = ¥ub V2 =1V2 = Yab 13 =1V2 = Yub a=|¥2 —

b ay=a,=by=by=1, ay=a,=by,=b,=~1, and z=2z, —
z;.
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The integral H(u,v) can be evaluated explicitly, to yield

uz

H(u,v)= uu{z[arcsin

u (2 +02+22) "~

+ arcsi
(4 + ) H(0? +22)?

vz T

in o
(u2 + 02)1/2( i+ 22)1/2 2

(2 +0?+22) " —u

v
2 (u2+vz+zz)1/2+v 2

——g u(u? +v2)? +(v? + z%) log

u+(u2+v2)l/2

(2 + 02 +22)"*+u

2 2y1/2
—u(u? +22) = 1o ) T

(vz+22)1/2 z
4(u2+ 1/2
-2 v(uz+1)2)1/2+(u2+zz)log—v—(u——u——)———-v(vz-kzz)l/2
2 (u2+22)1/2
+(*+z2) ) 1
ﬂzzlogv (v - z%) +§[(u2+02)3/2—(142+z2)3/2-—(v2-+—22)3/2+z3]. (7)

The second kind of integrals appear when one of the partial
elements is parallel to the Oxy plane, and the second one is
parallel to the Oyz plane. This is the case when one of the
elements belongs to one of the stips, or its image, while the other
element belongs to the via, or its image. If the first element
vertices are (X1, Yn» 21)s (¥,05 Vs 21)s (X5 Y 21)s (X5 P> 21)s
and the second element vertices are (X5, Y15, 252), (X2, Y25 Z12)s
(X35 Vy2s Zu2)s (X2, Y125 2,2), then the integral to be evaluated has
the form

Xut fZu2 fYul
o=["["/
Xn TZp Tn

Yu2 1
Y [(x— x2)2+(y—y')2+(21_2)2]

Again, by introducing changes of variables t= y’~ y, ¢/ =y,
the two integrals over y and y’ are reduced to only one integral
over t. That integral and the integral over, say x, can be evaluated
explicitly, thus yielding

5 & dydzdx. (8)

, 24
G=j; dz ), 3, a,bH(u,,uv,,z) 9

1 p=1g=1

where
u o v—t
H(u,v,z)= ———————=dtds (10)
j(;‘/(; (sz~|-t2-lez)1/2
and a;=—1,a,=1,u =|x; — X3}, u; =|x,; ~ X,|, and b, and

v, are the same as defined with (6). The integral H(u,v,z) can
be integrated explicitly to yield

uz
(u?+ 02)1/2( vt + 22)1/2

H(u,v,z)=v{ z|arcsin

+ arcsin T IZ)Z 2 ——721
(u?+0%) / (u?+2%)

U, (u2+v2+zz)1/2~v
2 V()40
LA (u? +0? +22)1/2—u}

2 (u2+vz+zz)1/2+u

—% u(u? +0?) 7+ (o + 22)

i)

2)1/2
(0*+22)"°

—u(u?+z

u+(u2 +22)1/2

52
z%log ;

(11)

and the remaining integral in (9) can be evaluated numerically.
Note that due to the reciprocity properties, L, = L,,, and

1§’ 1’1

thus substantial savings in the computation are possible.
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Analyzing Lossy Radial-Line Stubs
STEVEN L. MARCH, MEMBER, IEEE

Abstract —Equations for the design and analysis of lossless radial-line
stubs are available in the literature. However, when actually fabricated in
microstrip or stripline, these stubs possess finite conductor loss. This
attenuation must be included if these components are to be properly
integrated with other lossy transmission-line elements as part of a micro-
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